MODELOS ATÓMICOS

PROBLEMAS CON EL MODELO ATÓMICO DE RUTHERFORD – ESPECTROS ATÓMICOS

El modelo de Rutherford entraba en contradicción con las ecuaciones de Maxwell, que predecían que una carga eléctrica acelerada debía emitir energía en forma de radiación electromagnética, así que el electrón tendría que acabar estrellado contra el núcleo.

Tampoco explicaba el modelo de Rutherford los espectros atómicos de emisión y absorción de los gases a baja presión, que no son continuos como los de los cuerpos calientes.

 

En la siguiente imagen se puede observar a un espectro continuo (parte superior) y los espectros de lineas del sodio y del hidrógeno
En la siguiente imagen se puede observar a un espectro continuo (parte superior) y los espectros de lineas del sodio y del hidrógeno

TEORIA CUÁNTICA DE PLANCK

Cuando un cuerpo es calentado emite radiación electromagnética en un amplio rango de frecuencias.

El cuerpo negro (ideal) es aquel que además absorbe toda la radiación que llega a él sin reflejarla, de tal forma que sólo emite la correspondiente a su temperatura.

A fines del siglo XIX fue posible medir la radiación de un cuerpo negro con mucha precisión. La intensidad de esta radiación puede en principio ser calculada utilizando las leyes del electromagnetismo. El problema de principios del siglo XX consistía en que si bien el espectro teórico y los resultados experimentales coincidían para bajas frecuencias (infrarrojo), estos diferían radicalmente a altas frecuencias. Este problema era conocido con el provocativo nombre de “la catástrofe ultravioleta”, ya que la predicción teórica diverge a infinito en ese límite.

Quien logró explicar este fenómeno fue Max Planck, en 1900, que debió para ello sacrificar los conceptos básicos de la concepción ondulatoria de la radiación electromagnética.

Para resolver la catástrofe era necesario aceptar que la radiación no es emitida de manera continua sino en cuantos de energía discreta, a los que llamamos fotones.

La energía de estos fotones es:

E (fotón) = h.ν

ν : Frecuencia de la radiación electromagnética (s-1)

h : constante de Planck

h = 6,62.10-27 erg.s

h = 6,62.10-34 J.s

 

Cuando la frecuencia de la radiación es baja el efecto de la discretización se vuelve despreciable debido al minúsculo valor de la constante de Planck, y es perfectamente posible pensar al sistema como continuo, tal como lo hace el electromagnetismo

clásico. Sin embargo, a frecuencias altas el efecto se vuelve notable.

En 1905, Einstein utilizaría el concepto de fotón para explicar otro fenómeno problemático en el marco de la física clásica, la generación de una corriente eléctrica al aplicar luz monocromática sobre un circuito formado por chapas metálicas, conocido como el efecto fotoeléctrico. Einstein obtendría tiempo después el Premio Nobel por este importante hallazgo teórico.